

A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP

Paolo Focardi & Paula Brown

Jet Propulsion Laboratory, California Institute of Technology

2012 IEEE International Symposium on Antennas and Propagation

Chicago, IL July 10th, 2011

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Outline

- Overview of the Soil Moisture Active and Passive (SMAP) Mission & Instrument
- Basic Layout of SMAP "E" Configuration
- Feed Horn Components
- Major Design Drivers & Requirements
- Thermal and Alignment Tolerances
- OMT Split Design
- SMAP Scale Model
- RL & Pattern Measurements
- Conclusions

Mission Overview

- NASA's Soil Moisture Active and Passive (SMAP)
 mission will measure Earth's soil moisture and its
 freeze/thaw state over a 3 year period
- Applications:
 - More accurate and longer-term weather and climate predictions
 - Earlier drought warnings
 - Improved flood and landslide predictions
 - Improved agricultural production predictions
 - Better understanding of the global carbon cycle

- Near-polar, sun-synchronous orbit of 680 km
- Planned launch date of November 2014

Instrument Overview

- An L-band Synthetic Aperture
 Radar (SAR) and L-band
 radiometer (RAD) share an offset
 6-m deployable mesh reflector
 and feed
- The antenna boresight beam is pointed 35.5° off nadir

- The instrument spins at approximately 14.6 RPM around the nadir axis
- The result is a 1000-km swath on the ground
- The radiometer data is more accurate than the SAR data, but has a spatial resolution of about 40-km; the SAR spatial resolution is 1 – 3 km

SMAP "E" Configuration

Isometric View

Cut-away Isometric View

Waveguide to Coax Adapter (WCA) Detail

WCA Prototype Measurement

WCA Prototype being tested with WR650 Cal Kit

Major Design Drivers & Requirements

- Combined SAR & RAD RF bandwidth of 16%
- Radiometer beamwidth & main beam efficiency
 - RAD Beamwidth between 2.29° and 2.5°
 - RAD MBE > 87%
 - SAR Beamwidth < 2.8°
- Radiometer antenna pattern stability
 - RAD Earth Lobe power < 3%
 - RAD off-Earth Lobe power < 10%
- SAR gain and gain stability
 - SAR Gain > 35.55 dBi
 - SAR Gain stability < 0.07 dB
- SAR pointing stability
 - 50 m° ± 40 m° in Elevation
 - 0 m° ± 10 m° in Azimuth

Thermal & Alignment Tolerances

NAS

Worst Case Thermal + Alignment Tolerances

Split OMT Tolerance Performance

SMAP Flight Model

SMAP Scale Model

SMAP Complete Scale Model

Scale Model Feed

Return Loss Measurements

Radiation Pattern Measurement

Close-up of the Scale Model Feed Horn

Scale Model Feed Horn on Antenna Range Positioner

Scale Model Feed Horn with Absorber in Place

SAR V-pol Scale Model Pattern

RAD V-pol Scale Model Pattern

Flight Feed Horn RL

Feed Horn RL into SM OMT

Conclusions

- A dual-polarized, dual-frequency, corrugated feed horn for SMAP was designed and meets all mission requirements
- A scaled model of the feed was fabricated and tested showing an excellent agreement with predicted performance
- These results along with the "tunability" built-in into the flight model make us feel confident that the flight model will meet all mission requirements

Thank you!

Back-Up

SMAP Instrument

Flight Model

RF Models

Flight RF Model

Scale Model RF Model

SMAP Flight Instrument

SMAP Scale Model Instrument

Radome

